
IMPLEMENTING LINEAR ALGEBRA RELATED ALGORITHMS ON

THE TI-92+ CALCULATOR

John Alexopoulos and Paul Abraham

ADDRESS: Department of Mathematics and Computer Science, Kent State University Stark

Campus, Canton, OH 44720, USA.

E-MAIL: jalexopoulos@stark.kent.edu, pabraham@stark.kent.edu

ABSTRACT: Perhaps the most common use of the TI-92+ calculator is routine symbolic

computation. The purpose of this article, however, is to demonstrate a less utilized

feature of the TI-92+: its natural and powerful programming language. Indeed

programming is essential to complete many common symbolic computations that go

beyond the calculator's built-in commands. In this article we show how to implement

several linear algebra related algorithms including the Gram-Schmidt process, Least

Squares Approximations, Wronskians, Cholesky Decompositions and Generalized

Linear Least Square Approximations with QR Decompositions. For the authors the

necessity to augment TI-92+ built-in capabilities with user-defined code represents an

exciting way of introducing programming to mathematically oriented students from

the perspective of high-level symbolic computation and list manipulation.

KEYWORDS: Symbolic Programming, TI-92+ Calculator, Linear Algebra, Gram-Schmidt

Process, Least Squares Approximation, Wronskian, Cholesky Decomposition,

Generalized Linear Least Square Approximation, QR Decomposition.

 2

INTRODUCTION

 Perhaps the most common use of the TI-92+ calculator is routine symbolic computation.

Though even greater and faster symbolic capabilities exist with the use of software packages

like Mathematica or Maple, the TI-92+ offers a low-cost and high-quality means of

incorporating symbolic computation into the teaching and learning of mathematics without

the need for a computer.

 The purpose of this article, however, is to demonstrate a less utilized feature of the TI-

92+: its natural and powerful programming language. Unlike software programs that utilize

extensive libraries of functions, programming is essential to complete many common

symbolic computations that go beyond the TI-92+ built-in capabilities. For example compare

the problems of orthonormalizing a collection of vectors in Rn versus orthonormalizing a

collection of functions over an interval. Orthonormalizing vectors in Rn on the TI-92+ is

simply a matter of forming a matrix A whose columns are the given vectors and then

invoking the QR decomposition program. One of the outputs of the QR decomposition

program is a matrix R whose non-zero columns form an orthonormal basis for the column

space of A. In fact, in the case of symbolic calculation, R is computed using the Gram-

Schmidt process for vectors in Rn (Texas Instruments Inc., 1998). On the other hand, there is

no ready-made mechanism to orthornormalize a collection of functions on the TI-92+ which

is easily rectified in Section 1 with a minor amount of programming.

 Besides increasing the power of one’s calculator or computer, there are substantial gains

in learning possible with programming in a language that naturally reflects mathematics. In

his article on mathematics and ISETL programming, Dubinsky (Dubinsky, 1995) shows how

programming can be effectively incorporated into a theory of learning to enhance the learning

of undergraduate mathematics. In brief Dubinsky argues that programming provides a

learning mechanism through which abstract mathematical concepts can be seen as concrete

 3

objects which act on and interact with each other. Dubinsky’s approach relies heavily on the

ISETL programming language in which finite sets, functions and binary operations are easily

and naturally translated into ISETL code and are used to investigate and internalize

algorithms in abstract algebra and calculus.

 In this article, lists and matrices are the objects of primary interest suiting well the

strengths of the TI-92+ language. In particular we present:

• Section 1: The Gram Schmidt Process and Least Squares Approximations

• Section 2: The Wronskian

• Section 3: The Cholesky Decomposition

• Section 4: The Generalized Linear Least Squares Approximation Problem with QR

Decomposition

In most cases, the progression from algorithm to code strongly reinforces the natural

mathematical language used to describe the algorithm. Hence the construction and

implementation of the algorithm represents the internalization and generalization of the

specific computations students do in class and homework, and therefore offer worthwhile

exercises, projects or classroom discussion items.

 Finally, we conclude this article with a brief discussion of why we believe programming

on the TI-92+ may also be viewed as a valuable addition to the computer science training that

mathematically-oriented students normally receive.

SECTION 1: THE GRAM-SCHMIDT PROCESS AND LEAST SQUARES

APPROXIMATIONS

 Given a linearly independent collection },,{ 1 nvvV K= of square-integrable functions on

some interval [a,b], the Gram-Schmidt Orthonormalization Process can be used to obtain an

 4

orthonormal basis for the span of V. Using standard notation (Larson and Edwards, 1996,

273-274) for square-integrable functions f and g on [a,b],

dttgtfgf
b

a∫ ⋅=)()(, and ∫==
b

a
dttffff 2|)(|,|||| ,

the major programming steps of the Gram-Schmidt Process are as follows:

Step 1: Create a new list W that is the same size (dimension) as V.

Step 2: Set
|||| 1

1
1 v

vw = .

Step 3: For ni ≤<1 , set
∑
∑

−

=

−

=

⋅−

⋅−
=

1

1

1

1

,

,
i

j jjii

i

j jjii
i

wwvv

wwvv
w .

The collection },,{ 1 nwwW K= is then an orthonormal basis for the span of V. The

implementation of the Gram-Schmidt process requires only simple list handling which

includes creating a list w whose dimension is determined at run time.

grsmdt(v,x,a,b)
Func
Local m,w,i,j

© Given a list v of linearly independent functions of variable x on
an interval [a,b], this function returns an orthonormal list of
functions w whose span is identical to that of v.

dim(v)→m
newList(m)→w
For i,1,m
 v[i]-Σ(∙(v[i]*conj(w[j]),x,a,b)*w[j],j,1,i-1)→w[i]
 w[i]/(√(∙(w[i]*conj(w[i]),x,a,b)))→w[i]
EndFor
Return w
EndFunc

 A sample run of this Gram-Schmidt function is given below with the functions 1, x and

2x on the interval]1,1[− . As you may notice, the function returns the first three normalized

Legendre polynomials.

 5

Figure 1. A Run of the Gram-Schmidt Function

 The Gram-Schmidt process is commonly used to determine the least squares

approximation for a given function (Larson and Edwards, 1996, 295-304). Recall the least

squares approximation problem is as follows:

Given a square-integrable function f and a collection },,{ 1 nffL K= of linearly

independent, square-integrable functions on an interval [a,b], find a function g in the

span of L so that dttgtfgf
b

a

22)()(∫ −=− is minimal.

We solve the problem as follows:

Step1: Use the Gram-Schmidt process to create a list },,{ 1 nvvV K= which is an

orthonormal basis for the span of L.

Step 2: Create the list fc of the Fourier coefficients of f relative to the basis V, where

dttvtfvffc
b

a iii ∫ ⋅==)()(, .

Step 3: Set)()(
1

tvfctg i
n

i i ⋅= ∑ =
.

 The code required to accomplish least squares approximations and some sample runs

follow. The powerful and convenient ability to apply an operator across a list, in particular to

integrate a list of functions, is used in computing the Fourier coefficients in one step.

lsapx(f,l,x,a,b)
Func
Local v,fc

 6

© This function computes the least squares approximation of a
function f of variable x on an interval [a,b] with respect to the
space spanned by a list l of linearly independent functions.

grsmdt(l,x,a,b)→v
∙(f*conj(v),x,a,b)→fc
Return expand(sum(fc*v),x)
EndFunc

Figure 2. Sample Runs of the Least Squares Approximation Function

It is worth noting at this stage that the Gram-Schmidt and the Least Squares Approximation

processes can be generalized to the space of square-integrable functions)],,([2 µbaL where µ

is the measure induced by a weight function ω by setting

dttgtftgf
b

a∫ ⋅⋅=)()()(, ω and ∫ ⋅==
b

a
dttftfff 2)()(,|||| ω .

 Recall that a non-negative measurable function ω defined on [a,b] is called a weight function

if 0)(>∫ dtt
b

a
ω and all moments dttt

b

a

k∫)(ω exist and are finite for all non-negative integers

k (Stoer and Burlisch, 1993, 150-151). The code that implements these generalizations

follows:

grsmdt(v,ω,x,a,b)
Func
Local m,w,i,j

dim(v)→m
newList(m)→w
For i,1,m
 v[i]-Σ(∙(ω*v[i]*conj(w[j]),x,a,b)*w[j],j,1,i-1)→w[i]
 w[i]/(√(∙(ω*w[i]*conj(w[i]),x,a,b)))→w[i]
EndFor
Return w
EndFunc

lsapx(f,l,ω,x,a,b)

 7

Func
Local v,fc

grsmdt(l,ω,x,a,b)→v
∙(ω*f*conj(v),x,a,b)→fc
Return expand(sum(fc*v),x)
EndFunc

SECTION 2: THE WRONSKIAN

 Recall the Wronskian wronsk of a collection of n (n-1)-times-differentiable functions

{ }nffL ,,1 K= of a single variable x on some interval (a,b), is defined by:

{ }),,,(1 xffwronsk nK =

)()()(

)()()(
)()()(

)1()1(
2

)1(
1

21

21

xfxfxf

xfxfxf
xfxfxf

n
n

nn

n

n

−−−

′′′

L

MOMM

L

L

The Wronskian has several uses in linear algebra and differential equations, most notably to

establish whether or not a collection of functions is linearly independent (Larson and

Edwards, 1996, p. 226). Our pseudocode for calculating the Wronskian is:

 Step 1: Create an n by n matrix mtx to hold the rows on the Wronskian matrix.

 Step 2: Fill in the first row of the Wronskian matrix with L. L must first

 be converted to a row matrix.

Step 3: Fill in the rest of Wronskian matrix row by row.

Step 4: Compute the determinant of the Wronskian matrix.

The code for the algorithm follows and again reflects the pure reality of calculation done by

hand and provides a nice illustration of constructing a matrix row by row at run time.

wronsk(l,x)
Func
Local n,mtx,i

© This function computes the Wronskian of a list l of functions in
variable x.

dim(l)→n
newMat(n,n)→mtx
list▶mat(l)→mtx[1]
For i,2,n
 (mtx[i-1],x)→mtx[i]

 8

EndFor
Return det(mtx)
EndFunc

 Sample calls of the Wronskian function are displayed next.

Figure 3. Sample Runs of the Wronskian Function

SECTION 3: THE CHOLESKY DECOMPOSITION

 Recall a matrix A is called positive definite if and only if it is Hermitian and 0>xAxT ,

for all non-zero column vectors x of compatible dimension. If A is an n×n positive definite

matrix then A has a unique decomposition of the form TLL ⋅ for some lower triangular matrix

L. This decomposition is called the Cholesky decomposition (Stoer and Burlisch, 1993, 180-

183) of A. The Cholesky decomposition differs from the common LU decomposition in that

U must equal TL . Like LU decompositions, Cholesky decompositions are useful in solving

systems of equations. The existence of Cholesky decompositions can be proved with

induction.

 For an n×n matrix B , let 1−nB be the square matrix obtained by deleting the last row and

column entries of B . With this notation in mind, L (= nL) is normally computed recursively,

where the last row and column entries of nL non-trivially depend on 1−nL , 1−nA and the entries

in the last row and column of nA , until n=1 is reached. Specifically the pseudocode for

computing the Cholesky decomposition is as follows:

 9

Step 1: Given an n by n matrix A, if n=1 return the singleton matrix)(11a . Else

do the following steps.

Step 2: Noting that 1−nA is positive definite and T
nnn LLA 111 −−− ⋅= , determine the

Cholesky decomposition 1−nL of 1−nA . Once 1−nL is computed, Step 3 is based on the

following observations, where b and c are (n-1)-dimensional column vectors and α

is a scalar.

• A is of the form

 −

nn
T

n

ab
bA 1 .

• L is of the form

 −

αT
n

c
L 01 .

• Since TLLA ⋅= , TT
n bcL =⋅−)(1 and nn

T acc =+⋅ 2α .

Step 3: Obtain c by solving the triangular system bcLn =⋅−1 and then compute α .

Step 4: Construct nL by augmenting 1−nL appropriately.

 Our Cholesky decomposition function and a sample run follow.

cholesky(a)
Func
Local n,l,b,c,α

© This function computes the Cholesky decomposition of a positive
definite matrix a.

rowDim(a)→n
If n=1 Then
 Return [[√(a[1,1])]]
 Else
 cholesky(subMat(a,1,1,n-1,n-1))→l

 subMat(a,1,n,n-1,n)→b

 © simult solves a system using row-reduction

 simult(l,b)→c
 √(a[n,n]-(norm(c))^2)→α
 augment(c;[[α]])→c
 newMat(n-1,1)→b
 augment(l,b)→l
 augment(l;c)→l
 Return l
EndIf
EndFunc

 10

Figure 4. A Sample Run of the Cholesky Function

 Even though the code for the Cholesky function naturally reflects the mathematics

involved, it is nonetheless somewhat inefficient. The use of recursion, together with vector

and matrix instructions may hide quite a bit of unnecessary looping. In addition to this, a

more efficient algorithm should take advantage of the triangular nature of the system of

equations involved into computing the last row of the Cholesky matrix. That is, explicit

looping can be used to solve the system:

−−−− nn

n

nnn a

a

ll

l

)1(

1

)1)(1(1)1(

11 0
M

L

MOM

L

by forward-substitution
ii

i

j jijin
i l

cla
c

∑−

=
⋅−

=

1

1 , which unlike in Maple is not a built-in process

on the TI-92+. The more efficient code is next and runs significantly faster than the first

Cholesky function, even for small matrices. The orders of cholesky() and cholesk2() are

O(4n) and O(3n) respectively.

cholesk2(a)
Func
Local n,prev,l,i,j

rowDim(a)→n
If n=1 Then
 Return [[√(a[1,1])]]
 Else
 newMat(n,n)→l
 cholesk2(subMat(a,1,1,n-1,n-1))→prev

 © explicit loops are used to solve [l|b] with back
 substitution. Subsequently calculate ||c|| and augment l.

 11

 For i,1,n-1
 prev[i,i]→l[i,i]
 a[i,n]→l[n,i]
 For j,1,i-1
 prev[i,j]→l[i,j]
 l[n,i]-prev[i,j]*l[n,j]→l[n,i]
 EndFor
 l[n,i]/(l[i,i])→l[n,i]
 l[n,n]+(l[n,i])^2→l[n,n]
 EndFor

 √(a[n,n]-l[n,n])→l[n,n]
 Return l
EndIf
EndFunc

SECTION 4: THE GENERALIZED LINEAR LEAST SQUARES APPROXIMATION

PROBLEM WITH QR DECOMPOSITION

 Even though the TI-92+ has several built-in regressions (e.g., polynomial up to degree 4,

exponential, logistic, etc.), it does not offer a general solution to the linear least squares

approximation problem:

Given a set of points { }),(,),,(11 nn yxyx K and a collection of functions { }mff ,,1 K

find scalars maa ,,1 K so that if)()(
1

xfaxg i
m

i i ⋅= ∑ =
 then the quantity

()∑ =
−

n

j jj xgy
1

2)(is minimized.

Typically, maa ,,1 K are found by solving the normal equations:

YMXMM TT ⋅=⋅⋅)(, where

=

)()(

)()(

1

111

nmn

m

xfxf

xfxf
M

L

MOM

L

 and

=

ny

y
Y M

1

.

The normal equations can be solved by making use of standard techniques such as Gaussian

elimination, LU-decomposition and Cholesky decomposition (Stoer and Burlisch, 1993, 207-

209). There are drawbacks though such as numerical instability and even failure when the

square matrix MM T ⋅ is singular or nearly singular. In the case where n>m which is

typically expected, a better technique for determining maa ,,1 K that utilizes the QR

 12

decomposition of a matrix (Stoer and Burlisch, 1993, 209-210) can be used to circumvent the

difficulties that arise with the normal equations approach. Further, the QR decomposition

technique is a built-in program on the TI-92+.

 Our solution to the Generalized Linear Least Squares Approximation Problem is based on

an honor’s project (Petrovic, 1999) supervised by the first author. The solution will need to

be coded as a program since functions can not call programs (e.g. the QR decomposition

program), receive functions as parameters or manipulate system graphing variables and

settings. It is designed to accept multiple data sets simultaneously as a single matrix dmtx

whose first column contains the x-values of the data while the k subsequent columns of dmtx

contain corresponding y-values. The list of approximating functions must be stored as a row

vector field under the external name)(xf . The program computes the approximating

functions of the different data sets and stores them into graphing variables y1, …, yk. It plots

the data sets using different plotting marks and then graphs the approximating functions.

 Like the preceding examples, the translation of the mathematics to TI-92+ is natural and

the major steps are listed below. On the other hand, the desire to produce graphs within the

program poses technical issues. But even these are not too difficult to overcome and provide

us with an opportunity to demonstrate some powerful evaluation and addressing features

which can be utilized within programs.

 The major steps in the program are:

Step 1: Form an n×(m + k) augmented matrix A by setting []YMA = . A function

mkmtx is used to construct M, one row at a time. Then Y, the matrix of successive

y-coordinates, is appended to M.

Step 2: Find the QR decomposition of A. That is, write RQA ⋅= where Q is an n×n

unitary matrix and R is of the form

=
T
UR where U is an m×m upper-triangular

 13

matrix augmented with k column vectors and T is the (n-m)×m zero-matrix

augmented with k column vectors. Hence,

=

mhm

k

mm

m

hh

hh

r

rr
U

L

M

L

L

MOM

L

1

111111

0
 and

=

++

nkn

kmm

hh

hh
T

L

M

L

L

MOM

L

1

,11,1

00

00

Step 3: Extract the matrix U from R since the solutions to the upper triangular

system represented by the matrix U yields the desired coefficient lists { }mjj aa ,,1 K ,

kj ,,1K= corresponding to the k data sets.

Step 4: Solve the k systems corresponding to U.

Step 5: Plot the k data sets and linear least square fits. This part of the program

requires programming "trickery" to set up the graphing variables and settings and is

explained in comments.

 The code for the generalized linear least squares program is next, followed by a sample run.

linls(dmtx)
Prgm
Local mkmtx,qm,rm,m,n,s,a,ξ,j

© This program is an implementation of the linear least squares
algorithm, using QR decomposition.

© dmtx is a matrix containg the data. The first column contains the
x-values, while the subsequent columns contain y-values. The
approximating functions need to be externally defined by a function
named f which must return a row matrix.

Define mkmtx(dat)=Func
Local m,a,i

© This function evaluates the approximating functions at each x-
value. It returns a matrix.

rowDim(dat)→m
newMat(m,colDim(f(x)))→a
For i,1,m
 f(dat[i,1])→a[i]
EndFor
Return a
EndFunc

rowDim(dmtx)→m
colDim(dmtx)→n
colDim(f(x))→s

 14

© Set up the plot data.
© Augment the matrix of values of f, with the y-values of the data
and store the result in matrix a.

NewData sysData,dmtx
augment(mkmtx(dmtx),subMat(dmtx,1,2,m,n))→a

© Find the QR decomposition of a and
© store the useful part of the R-matrix back in a.

QR a,qm,rm
subMat(rm,1,1,s,s+n-1)→a

© Solve the resulting system and put the solutions row-wise back in
a. The command "rref" stands for "Reduced Row Echelon form".

rref(a)→a
(subMat(a,1,s+1,s,s+n-1))→a

© Output:

ClrGraph
For j,2,n

 © Plot the (j-1)th data set.

"c"&string(j)→ξ

 © Create a new plot in plot variable (j-1), based upon the x-value
obtained from the 1st column of the system variable sysData and y-
values obtained from the jth column of the same data variable. Note
that #ξ is called an indirection. When # is followed by a string,
the machine is instructed to interpret the string as a variable
name.

 NewPlot j-1,1,c1,#ξ,,,,j

 © Store the approximating function for the (j-1)th data set in the
(j-1)th graphing variable.

 © What follows appears to be little strange but it is nonetheless
very powerful. The problem lies with the fact that local variables
cease to exist beyond the execution of the program. By design, if an
expression is stored into a graphing variable (which of course
belongs to the system and is thus global) then variables within the
expression are not replaced by their current value. So if such an
expression involves a local variable, the graphing variable will not
contain what was intended. The problem is remedied by the use of the
command expr. This command takes a string as a parameter and
proceeds into converting it into an expression which it subsequently
executes. This process is similar to indirection but it is far more
general.

 string(dotP(a[j-1],f(x)))→ξ
 ξ&"→y"&string(j-1)&"(x)"→ξ
 expr(ξ)
EndFor

© Adjust the graph screen to the data and return to the home screen.

 15

ZoomData
DispHome
EndPrgm

 Here are several screens demonstrating how to set up and run the program with two data

sets and the function field 1, x and xsin .

 Figure 5a. Storage of Two Data Sets Figure 5b. Input of Three Functions

 Figure 5c. Resulting Y-Window Figure 5d. Resulting Graph Window

SOME FINAL REMARKS

 In the last four sections we have illustrated that a small amount of TI-92+ programming

can be used to solve several common and important linear algebra related problems. In most

cases, the programming is straightforward enough for exercises, projects or classroom

discussions which enhance learning of mathematics rather than detract from it. Recently

there have been other articles, for example (Mann and Zehavi, 1998), (Cappuccio, 1997) and

(Gonzalez-Vega, 1999), which demonstrate how programming on a computer algebra system

can be used to investigate problems in calculus, linear algebra, numerical analysis, modern

algebra and elementary number theory. Hence, there seems to be some agreement that

students can discover valuable mathematics by creating and implementing programs.

 16

 Let us conclude with the additional thought that mathematically-oriented students may

also gain valuable experience in computer science that might otherwise be missed through

programming on the TI-92+ (see also (Abraham, 2000) and (Alexopoulos, 2000)). Indeed,

although many mathematically oriented students will complete a beginning computer science

course that utilizes a major language like Basic, Fortran or C++, meaningful high-level

symbolic computation in those languages remains unrealistic for novice programmers. Even

dynamic allocation and high-level list manipulations, which are natural and vital in many

programming applications, may not be covered in beginning computer science courses

required for mathematics, science and engineering students. To date, all of our linear algebra

and multivariable calculus students—even those who have owned a symbolic programmable

calculator for some time and have completed the computer science classes required for

mathematics, science and engineering students—have had no clue at the start of the semester

about dynamic allocation, high-level list manipulation, or symbolic programming.

REFERENCES

[1] Abraham, P. (2000). Using the TI-92+ Calculator as a Tool for Illustrating Programming

Concepts. Proceedings of the ICTCM-12. http://archives.math.utk.edu/ICTCM/EP-12.html,

October 10, 2000.

[2] Alexopoulos, J. (2000). Implicit Differentiation on the TI-92+ Calculator as an Illustration

of Some Powerful Programming Features. Proceedings of the ICTCM-12.

http://archives.math.utk.edu/ICTCM/EP-12.html, October 10, 2000.

[3] Cappuccio, S. (1997). TI-92 Programming Language: Two Examples of Application in

Classroom. International Journal of Computer Algebra in Mathematics Education, 4 No. 3,

273-288.

 17

[4] Cohoon, J.P. and Davidson, J.W. (1999). C++ Program Design: An Introduction to

Programming and Object-Oriented Design, 2nd edition. McGraw-Hill.

[5] Dubinsky E. (1995). ISETL: A Programming Language for Learning Mathematics.

Communications on Pure and Applied Mathematics, 48, 1027-1051.

[6] Gonzalez-Vega, L. (1999). Using Linear Algebra to Introduce Computer Algebra,

Numerical Analysis, Data Structures and Algorithms. International Journal of Computer

Algebra in Mathematics Education, 6 No. 3, 209-219.

[7] Larson, R. and Edwards, B. (1996). Elementary Linear Algebra, 3rd edition. D.C. Heath

Company.

[8] Mann, G. and Zehavi, N. (1998). A Programming Approach to Extrema Problems.

International Journal of Computer Algebra in Mathematics Education, 5 No. 4, 269-277.

[9] Petrovic, J. (1999). The Linear Least Squares Problem on the TI-89 and TI-92+

Calculators. Honors project submitted to the Honors College of Kent State University.

[10] Stoer, J. and Burlisch, R. (1993). Introduction to Numerical Analysis, 2nd edition.

Springer-Verlag.

[11] Texas Instruments Inc. (1998). TI-92 Plus Module: A Supplement to the TI-92

Guidebook. Texas Instruments Inc.

BIOGRAPHICAL SKETCH

John Alexopoulos received his Ph.D. in mathematics from Kent State University in 1992. He

formerly held full time faculty positions at Flagler College and the Illinois Mathematics and

Science Academy. Currently, he is an assistant professor of mathematics at Kent State

University Stark Campus. His research interests include functional and abstract analysis,

measure theory and the teaching of undergraduate mathematics.

 18

Paul Abraham received his Ph.D. in mathematics from Kent State University in 1993 under

the supervision of Joe Diestel. His research interests include Banach spaces, martingale

theory and teaching-related issues like course assessment and the use of technology in the

classroom. He joined the KSU Stark faculty in 1996 after teaching at the College of the

Ozarks in Missouri for four years.

