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ABSTRACT:   Perhaps the most common use of the TI-92+ calculator is routine symbolic 

computation. The purpose of this article, however, is to demonstrate a less utilized 

feature of the TI-92+: its natural and powerful programming language.  Indeed 

programming is essential to complete many common symbolic computations that go 

beyond the calculator's built-in commands.  In this article we show how to implement 

several linear algebra related algorithms including the Gram-Schmidt process, Least 

Squares Approximations, Wronskians, Cholesky Decompositions and Generalized 

Linear Least Square Approximations with QR Decompositions.  For the authors the 

necessity to augment TI-92+ built-in capabilities with user-defined code represents an 

exciting way of introducing programming to mathematically oriented students from 

the perspective of high-level symbolic computation and list manipulation.  
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INTRODUCTION 

     Perhaps the most common use of the TI-92+ calculator is routine symbolic computation.  

Though even greater and faster symbolic capabilities exist with the use of software packages 

like Mathematica or Maple, the TI-92+ offers a low-cost and high-quality means of 

incorporating symbolic computation into the teaching and learning of mathematics without 

the need for a computer. 

     The purpose of this article, however, is to demonstrate a less utilized feature of the TI-

92+: its natural and powerful programming language.  Unlike software programs that utilize 

extensive libraries of functions, programming is essential to complete many common 

symbolic computations that go beyond the TI-92+ built-in capabilities. For example compare 

the problems of orthonormalizing a collection of vectors in Rn versus orthonormalizing a 

collection of functions over an interval.  Orthonormalizing vectors in Rn on the TI-92+ is 

simply a matter of forming a matrix A whose columns are the given vectors and then 

invoking the QR decomposition program.  One of the outputs of the QR decomposition 

program is a matrix R whose non-zero columns form an orthonormal basis for the column 

space of A.  In fact, in the case of symbolic calculation, R is computed using the Gram-

Schmidt process for vectors in Rn (Texas Instruments Inc., 1998).  On the other hand, there is 

no ready-made mechanism to orthornormalize a collection of functions on the TI-92+ which 

is easily rectified in Section 1 with a minor amount of programming. 

     Besides increasing the power of one’s calculator or computer, there are substantial gains 

in learning possible with programming in a language that naturally reflects mathematics.  In 

his article on mathematics and ISETL programming, Dubinsky (Dubinsky, 1995) shows how 

programming can be effectively incorporated into a theory of learning to enhance the learning 

of undergraduate mathematics.  In brief Dubinsky argues that programming provides a 

learning mechanism through which abstract mathematical concepts can be seen as concrete 
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objects which act on and interact with each other. Dubinsky’s approach relies heavily on the 

ISETL programming language in which finite sets, functions and binary operations are easily 

and naturally translated into ISETL code and are used to investigate and internalize 

algorithms in abstract algebra and calculus.   

     In this article, lists and matrices are the objects of primary interest suiting well the 

strengths of the TI-92+ language.  In particular we present: 

• Section 1: The Gram Schmidt Process and Least Squares Approximations 

• Section 2: The Wronskian 

• Section 3: The Cholesky Decomposition 

• Section 4: The Generalized Linear Least Squares Approximation Problem with QR 

Decomposition 

In most cases, the progression from algorithm to code strongly reinforces the natural 

mathematical language used to describe the algorithm.  Hence the construction and 

implementation of the algorithm represents the internalization and generalization of the 

specific computations students do in class and homework, and therefore offer worthwhile 

exercises, projects or classroom discussion items. 

     Finally, we conclude this article with a brief discussion of why we believe programming 

on the TI-92+ may also be viewed as a valuable addition to the computer science training that 

mathematically-oriented students normally receive. 

  

SECTION 1: THE GRAM-SCHMIDT PROCESS AND LEAST SQUARES 

APPROXIMATIONS 

     Given a linearly independent collection },,{ 1 nvvV K=  of square-integrable functions on 

some interval [a,b], the Gram-Schmidt Orthonormalization Process  can be used to obtain an 



 4

orthonormal basis for  the span of V.  Using standard notation (Larson and Edwards, 1996, 

273-274) for square-integrable functions f and g on  [a,b], 

dttgtfgf
b
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b
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dttffff 2|)(|,|||| , 

the major programming steps of the  Gram-Schmidt Process are as follows: 

Step 1: Create a new list W that is the same size (dimension) as V. 
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The collection },,{ 1 nwwW K= is then an orthonormal basis for the span of V.  The 

implementation of the Gram-Schmidt process requires only simple list handling which 

includes creating a list w whose dimension is determined at run time. 

grsmdt(v,x,a,b) 
Func 
Local  m,w,i,j 
 
© Given a list v of linearly independent functions of variable x on 
an interval [a,b], this function returns an orthonormal list of 
functions w whose span is identical to that of v. 
 
dim(v)→m 
newList(m)→w 
For  i,1,m 
   v[i]-Σ(∙(v[i]*conj(w[j]),x,a,b)*w[j],j,1,i-1)→w[i] 
   w[i]/(√(∙(w[i]*conj(w[i]),x,a,b)))→w[i] 
EndFor 
Return  w 
EndFunc 

 

   A sample run of this Gram-Schmidt function is given below with the functions 1, x and 

2x  on the interval ]1,1[− .  As you may notice, the function returns the first three normalized 

Legendre polynomials. 
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Figure 1. A Run of the Gram-Schmidt Function 

 

     The Gram-Schmidt process is commonly used to determine the least squares 

approximation for a given function  (Larson and Edwards, 1996, 295-304).  Recall the least 

squares approximation  problem is as follows: 

Given a square-integrable function f and a collection },,{ 1 nffL K= of linearly 

independent, square-integrable functions on an interval [a,b], find a function g in the 

span of L so that dttgtfgf
b

a

22 )()(∫ −=−  is minimal. 

We solve the problem as follows: 

Step1:  Use the Gram-Schmidt process to create a list },,{ 1 nvvV K=  which is an 

orthonormal basis for the span of L. 

Step 2:  Create the list fc of the Fourier coefficients of f relative to the basis V, where 

dttvtfvffc
b

a iii ∫ ⋅== )()(, . 

Step 3:  Set )()(
1

tvfctg i
n

i i ⋅= ∑ =
. 

     The code required to accomplish least squares approximations and some sample runs 

follow.  The powerful and convenient ability to apply an operator across a list, in particular to 

integrate a list of functions, is used in computing the Fourier coefficients in one step. 

lsapx(f,l,x,a,b) 
Func 
Local  v,fc 
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© This function computes the least squares approximation of a 
function f of variable x on an interval [a,b] with respect to the 
space spanned by a list l of linearly independent functions. 
 
grsmdt(l,x,a,b)→v 
∙(f*conj(v),x,a,b)→fc 
Return  expand(sum(fc*v),x) 
EndFunc 

 

 

Figure 2. Sample Runs of the Least Squares Approximation Function 

It is worth noting at this stage that the Gram-Schmidt and the Least Squares Approximation 

processes can be generalized to the space of square-integrable functions )],,([2 µbaL where µ 

is the measure induced by a weight function ω by setting  

dttgtftgf
b

a∫ ⋅⋅= )()()(, ω  and ∫ ⋅==
b

a
dttftfff 2)()(,|||| ω . 

 Recall that a non-negative measurable function ω defined on [a,b] is called a weight function 

if 0)( >∫ dtt
b

a
ω  and all moments dttt

b

a

k∫ )(ω  exist and are finite for all non-negative integers 

k (Stoer and Burlisch, 1993, 150-151).  The code that implements these generalizations 

follows: 

grsmdt(v,ω,x,a,b) 
Func 
Local  m,w,i,j 
 
dim(v)→m 
newList(m)→w 
For  i,1,m 
   v[i]-Σ(∙(ω*v[i]*conj(w[j]),x,a,b)*w[j],j,1,i-1)→w[i] 
   w[i]/(√(∙(ω*w[i]*conj(w[i]),x,a,b)))→w[i] 
EndFor 
Return  w 
EndFunc 
 
 
lsapx(f,l,ω,x,a,b) 
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Func 
Local v,fc 
 
grsmdt(l,ω,x,a,b)→v 
∙(ω*f*conj(v),x,a,b)→fc 
Return expand(sum(fc*v),x) 
EndFunc 
 

SECTION 2: THE WRONSKIAN 

     Recall the Wronskian wronsk of a collection of n (n-1)-times-differentiable functions 

{ }nffL ,,1 K=  of a single variable x on some interval (a,b), is defined by: 
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The Wronskian has several uses in linear algebra and differential equations, most notably to 

establish whether or not a collection of functions is linearly independent (Larson and 

Edwards, 1996, p. 226). Our pseudocode for calculating the Wronskian is: 

       Step 1: Create an n by n matrix mtx to hold the rows on the Wronskian matrix.  

       Step 2:  Fill in the first row of the Wronskian matrix with L.  L must first 

                    be converted to a row matrix. 

Step 3: Fill in the rest of Wronskian matrix row by row. 

Step 4:  Compute the determinant of the Wronskian matrix. 

The code for the algorithm follows and again reflects the pure reality of calculation done by 

hand and provides a nice illustration of constructing a matrix row by row at run time.  

wronsk(l,x) 
Func 
Local  n,mtx,i 
 
© This function computes the Wronskian of a list l of functions in 
variable x. 
 
dim(l)→n 
newMat(n,n)→mtx 
list▶mat(l)→mtx[1] 
For  i,2,n 
  (mtx[i-1],x)→mtx[i] 
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EndFor 
Return  det(mtx) 
EndFunc 

 

   Sample calls of the Wronskian function are displayed next. 

 

 

Figure 3. Sample Runs of the Wronskian Function 

 

SECTION 3: THE CHOLESKY DECOMPOSITION 

     Recall a matrix A is called positive definite if and only if it is Hermitian and 0>xAxT , 

for all non-zero column vectors x of compatible dimension.  If A is an n×n positive definite 

matrix then A has a unique decomposition of the form TLL ⋅  for some lower triangular matrix 

L.  This decomposition is called the Cholesky decomposition (Stoer and Burlisch, 1993, 180-

183) of A.  The Cholesky decomposition differs from the common LU decomposition in that 

U must equal TL .  Like LU decompositions, Cholesky decompositions are useful in solving 

systems of equations.  The existence of Cholesky decompositions can be proved with 

induction. 

     For an n×n matrix B , let 1−nB be the square matrix obtained by deleting the last row and 

column entries of B .  With this notation in mind, L (= nL ) is normally computed recursively, 

where the last row and column entries of nL  non-trivially depend on 1−nL , 1−nA and the entries 

in the last row and column of nA , until n=1 is reached. Specifically the pseudocode for 

computing the Cholesky decomposition is as follows:  
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Step 1:   Given an n by n matrix A, if n=1 return the singleton matrix )( 11a .  Else 

do the following steps. 

Step 2:  Noting that 1−nA  is positive definite and T
nnn LLA 111 −−− ⋅= , determine the 

Cholesky decomposition 1−nL of 1−nA .  Once 1−nL  is computed, Step 3 is based on the 

following observations, where b and c are (n-1)-dimensional column vectors and α  

is a scalar. 

• A is of the form 






 −

nn
T

n

ab
bA 1 . 

• L is of the form 






 −

αT
n

c
L 01 . 

• Since TLLA ⋅= , TT
n bcL =⋅− )( 1 and nn

T acc =+⋅ 2α . 

Step 3: Obtain c by solving the triangular system bcLn =⋅−1  and then compute α . 

Step 4:  Construct nL  by augmenting 1−nL  appropriately. 

     Our Cholesky decomposition function and a sample run follow. 

cholesky(a) 
Func 
Local  n,l,b,c,α 
 
© This function computes the Cholesky decomposition of a positive 
definite matrix a. 
 
rowDim(a)→n 
If n=1 Then 
         Return  [[√(a[1,1])]] 
       Else 
         cholesky(subMat(a,1,1,n-1,n-1))→l 

            subMat(a,1,n,n-1,n)→b 
 
            © simult solves a system using row-reduction 

 
        simult(l,b)→c 
        √(a[n,n]-(norm(c))^2)→α 
        augment(c;[[α]])→c 
        newMat(n-1,1)→b 
        augment(l,b)→l 
        augment(l;c)→l 
        Return  l 
EndIf 
EndFunc 
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Figure 4. A Sample Run of the Cholesky Function 

     Even though the code for the Cholesky function naturally reflects the mathematics 

involved, it is nonetheless somewhat inefficient.  The use of recursion, together with vector 

and matrix instructions may hide quite a bit of unnecessary looping.  In addition to this, a 

more efficient algorithm should take advantage of the triangular nature of the system of 

equations involved into computing the last row of the Cholesky matrix.  That is, explicit 

looping can be used to solve the system: 
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by forward-substitution 
ii

i

j jijin
i l

cla
c

∑−

=
⋅−

=

1

1 , which unlike in Maple is not a built-in process 

on the TI-92+.  The more efficient code is next and runs significantly faster than the first 

Cholesky function, even for small matrices.  The orders of cholesky() and cholesk2() are 

O( 4n ) and O( 3n ) respectively. 

cholesk2(a) 
Func 
Local n,prev,l,i,j 
 
rowDim(a)→n 
If n=1 Then 
         Return [[√(a[1,1])]] 
       Else 
         newMat(n,n)→l 
         cholesk2(subMat(a,1,1,n-1,n-1))→prev 
 
         © explicit loops are used to solve [l|b] with back   
         substitution. Subsequently calculate ||c|| and augment l. 
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         For i,1,n-1 
           prev[i,i]→l[i,i] 
           a[i,n]→l[n,i] 
           For j,1,i-1 
             prev[i,j]→l[i,j] 
             l[n,i]-prev[i,j]*l[n,j]→l[n,i] 
           EndFor 
           l[n,i]/(l[i,i])→l[n,i] 
           l[n,n]+(l[n,i])^2→l[n,n] 
         EndFor 

            √(a[n,n]-l[n,n])→l[n,n] 
         Return l 
EndIf 
EndFunc 

 

SECTION 4: THE GENERALIZED LINEAR LEAST SQUARES APPROXIMATION 

PROBLEM WITH QR DECOMPOSITION 

     Even though the TI-92+ has several built-in regressions (e.g., polynomial up to degree 4, 

exponential, logistic, etc.), it does not offer a general solution to the linear least squares 

approximation problem: 

Given a set of points { }),(,),,( 11 nn yxyx K  and a collection of functions { }mff ,,1 K  

find scalars maa ,,1 K  so that if )()(
1

xfaxg i
m

i i ⋅= ∑ =
 then the quantity 

( )∑ =
−

n

j jj xgy
1

2)(  is minimized. 

Typically, maa ,,1 K  are found by solving the normal equations: 

YMXMM TT ⋅=⋅⋅ )( , where 
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The normal equations can be solved by making use of standard techniques such as Gaussian 

elimination, LU-decomposition and Cholesky decomposition (Stoer and Burlisch, 1993, 207-

209). There are drawbacks though such as numerical instability and even failure when the 

square matrix MM T ⋅  is singular or nearly singular.  In the case where n>m which is 

typically expected, a better technique for determining maa ,,1 K  that utilizes the QR 
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decomposition of a matrix (Stoer and Burlisch, 1993, 209-210) can be used to circumvent the 

difficulties that arise with the normal equations approach.  Further, the QR decomposition 

technique is a built-in program on the TI-92+.   

     Our solution to the Generalized Linear Least Squares Approximation Problem is based on 

an honor’s project (Petrovic, 1999) supervised by the first author.  The solution will need to 

be coded as a program since functions can not call programs (e.g. the QR decomposition 

program), receive functions as parameters or manipulate system graphing variables and 

settings. It is designed to accept multiple data sets simultaneously as a single matrix dmtx 

whose first column contains the x-values of the data while the k subsequent columns of dmtx 

contain corresponding y-values.  The list of approximating functions must be stored as a row 

vector field under the external name )(xf .  The program computes the approximating 

functions of the different data sets and stores them into graphing variables y1, …, yk.  It plots 

the data sets using different plotting marks and then graphs the approximating functions. 

     Like the preceding examples, the translation of the mathematics to TI-92+ is natural and 

the major steps are listed below.  On the other hand, the desire to produce graphs within the 

program poses technical issues.  But even these are not too difficult to overcome and provide 

us with an opportunity to demonstrate some powerful evaluation and addressing features 

which can be utilized within programs.   

     The major steps in the program are: 

Step 1: Form an n×(m + k) augmented matrix A by setting [ ]YMA = .  A function 

mkmtx is used to construct M, one row at a time.  Then Y, the matrix of successive 

y-coordinates, is appended to M. 

Step 2: Find the QR decomposition of A. That is, write RQA ⋅=  where Q is an n×n 

unitary matrix and R is of the form 



=
T
UR  where U is an m×m upper-triangular 
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matrix augmented with k column vectors and T is the (n-m)×m zero-matrix 

augmented with k column vectors.  Hence,  
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Step 3: Extract the matrix U from R since the solutions to the upper triangular 

system represented by the matrix U yields the desired coefficient lists { }mjj aa ,,1 K , 

kj ,,1K= corresponding to the k data sets. 

Step 4:  Solve the k systems corresponding to U.  

Step 5:  Plot the k data sets and linear least square fits.  This part of the program 

requires programming "trickery" to set up the graphing variables and settings and is 

explained in comments. 

 The code for the generalized linear least squares program is next, followed by a sample run. 

linls(dmtx) 
Prgm 
Local mkmtx,qm,rm,m,n,s,a,ξ,j 

 
© This program is an implementation of the linear least squares 
algorithm, using QR decomposition. 
 
© dmtx is a matrix containg the data. The first column contains the 
x-values, while the subsequent columns contain y-values. The 
approximating functions need to be externally defined by a function 
named f which must return a row matrix. 

 
Define mkmtx(dat)=Func 
Local m,a,i 

 
© This function evaluates the approximating functions at each x-
value. It returns a matrix. 
 
rowDim(dat)→m 
newMat(m,colDim(f(x)))→a 
For i,1,m 
  f(dat[i,1])→a[i] 
EndFor 
Return a 
EndFunc 
 
rowDim(dmtx)→m 
colDim(dmtx)→n 
colDim(f(x))→s 
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© Set up the plot data. 
© Augment the matrix of values of f, with the y-values of the data 
and store the result in matrix a. 
 
NewData sysData,dmtx 
augment(mkmtx(dmtx),subMat(dmtx,1,2,m,n))→a 
 
© Find the QR decomposition of a and 
© store the useful part of the R-matrix back in a. 
 
QR a,qm,rm 
subMat(rm,1,1,s,s+n-1)→a 
 
© Solve the resulting system and put the solutions row-wise back in 
a. The command "rref" stands for "Reduced Row Echelon form".  
 
rref(a)→a 
(subMat(a,1,s+1,s,s+n-1))→a 
 
© Output: 
 
ClrGraph 
For j,2,n 
 
 © Plot the (j-1)th data set. 

  
"c"&string(j)→ξ 

 
 © Create a new plot in plot variable (j-1), based upon the x-value 
obtained from the 1st column of the system variable sysData and y-
values obtained from the jth column of the same data variable. Note 
that #ξ is called an indirection. When # is followed by a string, 
the machine is instructed to interpret the string as a variable 
name. 
 
 NewPlot j-1,1,c1,#ξ,,,,j 
 
 © Store the approximating function for the (j-1)th data set in the 
(j-1)th graphing variable. 
 
 ©  What follows appears to be little strange but it is nonetheless 
very powerful. The problem lies with the fact that local variables 
cease to exist beyond the execution of the program. By design, if an 
expression is stored into a graphing variable (which of course 
belongs to the system and is thus global) then variables within the 
expression are not replaced by their current value. So if such an 
expression involves a local variable, the graphing variable will not 
contain what was intended. The problem is remedied by the use of the 
command expr. This command takes a string as a parameter and 
proceeds into converting it into an expression which it subsequently 
executes. This process is similar to indirection but it is far more 
general. 

 
 string(dotP(a[j-1],f(x)))→ξ 
 ξ&"→y"&string(j-1)&"(x)"→ξ 
 expr(ξ) 
EndFor 
 
© Adjust the graph screen to the data and return to the home screen. 
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ZoomData 
DispHome 
EndPrgm 
 

     Here are several screens demonstrating how to set up and run the program with two data 

sets and the function field 1, x and xsin . 

   

          Figure 5a. Storage of Two Data Sets                 Figure 5b. Input of Three Functions 

  

          Figure 5c. Resulting  Y-Window                   Figure 5d.  Resulting  Graph Window 

 

SOME FINAL REMARKS 

     In the last four sections we have illustrated that a small amount of TI-92+ programming 

can be used to solve several common and important linear algebra related problems.  In most 

cases, the programming is straightforward enough for exercises, projects or classroom 

discussions which enhance learning of mathematics rather than detract from it.  Recently 

there have been other articles, for example (Mann and Zehavi, 1998), (Cappuccio, 1997) and 

(Gonzalez-Vega, 1999), which demonstrate how programming on a computer algebra system 

can be used to investigate problems in calculus, linear algebra, numerical analysis, modern 

algebra and elementary number theory.  Hence, there seems to be some agreement that 

students can discover valuable mathematics by creating and implementing programs. 
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     Let us conclude with the additional thought that mathematically-oriented students may 

also gain valuable experience in computer science that might otherwise be missed through  

programming on the TI-92+ (see also (Abraham, 2000) and (Alexopoulos, 2000)). Indeed, 

although many mathematically oriented students will complete a beginning computer science 

course that utilizes a major language like Basic, Fortran or C++, meaningful high-level 

symbolic computation in those languages remains unrealistic for novice programmers.  Even 

dynamic allocation and high-level list manipulations, which are natural and vital in many 

programming applications, may not be covered in beginning computer science courses 

required for mathematics, science and engineering students.  To date, all of our linear algebra 

and multivariable calculus students—even those who have owned a symbolic programmable 

calculator for some time and have completed the computer science classes required for 

mathematics, science and engineering students—have had no clue at the start of the semester 

about dynamic allocation, high-level list manipulation, or symbolic programming. 
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